The Invertible Matrix Theorem

Let A be a square $n \times n$ matrix. Then the following statements are equivalent. That is, for a given A, the statements are either all true or all false.

- a. A is an invertible matrix.
- b. A is row equivalent to the $n \times n$ identity matrix.
- c. A has n pivot positions.
- d. The equation $A\vec{x} = \vec{0}$ has only the trivial solution.
- e. The columns of A form a linearly independent set.
- f. The linear transformation $\vec{x} \to A\vec{x}$ is one-to-one. (*)
- g. The equation $A\vec{x} = \vec{b}$ has at least one solution for each \vec{b} in R^n .
- h. The columns of A span R^n .
- i. The linear transformation $\vec{x} \to A\vec{x}$ maps R^n onto R^n . (*)
- j. There is an $n \times n$ matrix C such that CA = I.
- k. There is an $n \times n$ matrix D such that AD = I.
- 1. A^{T} is an invertible matrix.
- m. The columns of A form a basis of R^n .
- n. $ColA = R^n$
- o. $\dim ColA = n$
- p. rankA = n
- q. $NulA = \{\vec{0}\}$
- r. $\dim NulA = 0$
- s. The number 0 is not an eigenvalue of A.
- t. The determinant of A is not zero.
- (*) not covered in the class